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Introduction

• Framework for managing/modularizing tasks related to diagnostics

• Handle using input

• Computing metrics

• Provenance capture

• Running diags in parallel (multi-processing, distributedly)

• Basic structure but allows for independence, no dependencies

• Optional support for commonly used tasks

• Graphing with VCS

• Viewing results on a webpage created with the CDP viewer API

• Metric calculations with CDAT (GenUtil, CdUtil)



Problems Solved

• Scientific code is complex, so has a short life

• Scientists don’t have the urgency to implement good software engineering 
principles
• Should focus domain-specific work, not viewing results, parallelism, etc.

• Provides a framework for diagnostics to be shared

• Diagnostic packages built with CDP have similar architecture, easy for 
developers to transition across projects 
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Design and Architecture

• Parameters object:
• Used as input, created from a Python script

• Encapsulates sanitization of user input

• Parser object: creates Parameters object from the command line
• Takes raw file: diags_package.py -p myparams.py

• Individual parameters are command line arguments, ex: diags_package.py -p 
myparams.py –-seasons ANN

• Example parameters script: 
variables = [‘T’, ‘PRECT’]

regions = [‘global’]

seasons = [‘ANN’, ‘DJF’]



Design and Architecture

• Metrics:

• Cachable, not in by default in Python 2 

• Single interface to work with Fortran, C, Python code

• ESGF CWT-based metrics as well

• IO:

• Handles input/output with JSONs

• Main script (driver), designed for a single run

• Input: Parameters object

• Do calculations using metrics, save info with IO, etc

• Results: View results with CDP viewer, provenance capture through CDP provenance.



Design and Architecture

• Run:

• Run a driver in serial, or parallel using multi-processing or 
with distributed computing

• Data parallelism with different parameters

• Viewer:

• Easily create an interactive, sharable HTML page

• In Python, no HTML/Javascript

• Provenance:

• Create a backup of the Parameters object

• Log of output, utils for data validation (hashing, etc)



Design and Architecture

• Only  14 lines of code



Design and Architecture

• Data parallelism

• User can submit multiple runs:

• diags_package.py -p myparams1.py myparams2.py

• diags_package.py -p myparams.cfg

• Compose parameters:

• diags_package.py -p myparams.py –d myparams.cfg

• Transparency:

• Each run is a job

• Same interface to run in serial, parallel, parallel w/ distributed

• Users don’t need to tailor input to match the type of run

• CDP CLI

• Tool for viewing status of, restarting, killing distributed jobs

[diags1]
vars = ["T"]
seasons = ["ANN", "SON"]

[diags2]
vars = ["PRECT"]
seasons = ["JJA"]



Design and Architecture
• E3SM Diagnostics Package performance, w/ 1330 individual diagnostics

• Good strong and weak scaling

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 128

Ti
m
e	
(s
ec
)

Number	 of	Processes

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128

Sp
ee
du
p

Number	 of	Processes



Uses

• PCMDI Metrics Package:
• Completed January 2017

• Need to add new features

• E3SM Diagnostics Package
• In progress, 7 plot sets done

• Replacement for AMWG Diagnostics

• ARM Diagnostics



Future Work

• Cloud computing
• Containerize software, deploy on PaaS (AWS, Google Cloud Platform, etc)

• Library of metrics, but would introduce more dependencies
• Standardize more components
• Ex: Interface for plotting reference, test, and diff data
• plot(reference, test, difference)

• Finish implementing E3SM Diagnostics, ARM Diagnostics, expand on PCMDI 
Metrics Package


